skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaastra, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this study, we investigate interstellar absorption lines along the line of sight toward the galactic low-mass X-ray binary Cygnus X-2. We combine absorption line data obtained from high-resolution X-ray spectra collected with the Chandra and XMM-Newton satellites, along with far-UV absorption lines observed by the Hubble Space Telescope’s (HST) Cosmic Origins Spectrograph (COS) instrument. Our primary objective is to understand the abundance and depletion of oxygen, iron, sulfur, and carbon. To achieve this, we have developed an analysis pipeline that simultaneously fits both the UV and X-ray data sets. This novel approach takes into account the line-spread function of HST/COS, enhancing the precision of our results. We examine the absorption lines of Feii, Sii, Cii, and Cipresent in the far-UV spectrum of Cygnus X-2, revealing the presence of at least two distinct absorbers characterized by different velocities. Additionally, we employCloudysimulations to compare our findings concerning the ionic ratios for the studied elements. We find that gaseous iron and sulfur exist in their singly ionized forms, Feiiand Sii, respectively, while the abundances of Ciiand Cido not agree with the Cloudy simulations of the neutral ISM. Finally, we explore discrepancies in the X-ray atomic data of iron and discuss their impact on the overall abundance and depletion of iron. 
    more » « less
  2. null (Ed.)
    We present an analysis of archival Chandra data of the merging galaxy cluster ClG 0217+70. The Fe  XXV He α X-ray emission line is clearly visible in the 25 ks observation, allowing a precise determination of the redshift of the cluster as z  = 0.180 ± 0.006. We measure k T 500  = 8.3  ±  0.4 keV and estimate M 500  = (1.06 ± 0.11) × 10 15   M ⊙ based on existing scaling relations. Correcting both the radio and X-ray luminosities with the revised redshift reported here, which is much larger than previously inferred based on sparse optical data, this object is no longer an X-ray underluminous outlier in the L X  −  P radio scaling relation. The new redshift also means that, in terms of physical scale, ClG 0217+70 hosts one of the largest radio halos and one of the largest radio relics known to date. Most of the relic candidates lie in projection beyond r 200 . The X-ray morphological parameters suggest that the intracluster medium is still dynamically disturbed. Two X-ray surface brightness discontinuities are confirmed in the northern and southern parts of the cluster, with density jumps of 1.40 ± 0.16 and 3.0 ± 0.6, respectively. We also find a 700 × 200 kpc X-ray faint channel in the western part of the cluster, which may correspond to compressed heated gas or increased non-thermal pressure due to turbulence or magnetic fields. 
    more » « less
  3. null (Ed.)
  4. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is one of the most intensive multi-wavelength AGN monitoring campaigns ever. For most of the campaign,the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60-70 day holiday, suggesting that unobserved changes to the ionizing continuum were present. To understand this remarkable phenomenon and to obtain an independent assessment of the ionizing continuum variations, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In this cycle, variations in this obscurer’s line-of-sight covering factor modify the soft X-ray continuum, changing the ionization of helium. Ionizing radiation produced by recombining helium then affects the level of ionization of some ions seen by HST. In particular, high-ionization species are affected by changes in the obscurer covering factor, which does not affect the optical or UV continuum, so appear as uncorrelated changes, a “holiday”. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission-line behavior observed. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)